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A paradigm shift in Large Language Models (LLMs)
◦ Reasoning the process that makes an LLM solve tasks that are unsolvable by just next token prediction .

◦ An example is the results on math benchmarks.

https://www.vals.ai/benchmarks/aime-2025-03-11
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Reasoning chatbots

◦ More and more LLMs include the reasoning option.

https://chatgpt.com/ https://chat.deepseek.com/

◦ Next, we look at possible ways to turn a next token prediction model to a reasoning model.

◦ The current “reasoning” paradigm is based on RL!
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From Chain-of-Thought to Reasoning

◦ With Chain-of-Thought (CoT) [18], we give the model examples of how to reason.

CoT examples:
Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls.
How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The
answer is 11.
Q: · · · A: · · ·

User Prompt: si

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many
apples do they have?

Answer: ai

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had

23 − 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

Multiple Q/A examples

◦ When given a new question, we expect the model to reason similarly to the examples above.

◦ The model first plans, then it answers.
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From Chain-of-Thought to Reasoning

◦ With Reasoning, we aim at teaching the model how to reason from rewards.

User Prompt: si

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many
apples do they have?

Internal CoT:
<THINK> Okay, let’s see. The problem says the cafeteria had 23 apples. Then they used 20
to make lunch, and after that, they bought 6 more. We need to find out how many apples they
have now.
First, I’ll start with the initial number of apples, which is 23. Then, they used 20 for lunch.
Using apples means subtracting them from the total. So, I subtract 20 from 23. Let me do
that calculation: 23 minus 20. That gives me 3. So after using 20 apples, they have 3 left.
· · · </THINK>

Answer: ai

A: The answer is 9.

Learned reasoning by DeepSeek

◦ The internal CoT is not copied from examples, not prompted, but learned from “reward” maximization.
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Outline

Pre-training

Lorem ipsum dolor sit amet, 
consec te tu r ad ip i sc ing e l i t . 
Pellentesque vel varius dolor. 
Aenean ipsum eros, interdum quis 
blandit at, scelerisque quis nibh. 
Aliquam nibh ligula, elementum 
eget faucibus et, lacinia non nibh. 
Maecenas rutrum libero eu ex 
egestas condimentum. Fusce eget 
nunc sapien. Integer iaculis elit 
ante, in euismod justo sagittis 
faucibus. Nulla vitae interdum 
tellus. In varius quam eget leo 
tempus, nec efficitur est sagittis. 
Duis lobortis finibus libero, id 
feug ia t era t consecte tur id . 
Phasel lus portt i tor, erat non 
venenatis tincidunt, velit libero 
fringilla nunc, eu scelerisque erat 
e n i m s e m p e r l e c t u s . U t 

Import os 
Import pandas as pd 
Import numpy as np 

s=0 
for i in range(10): 

s+=l[i]

X=5, Y=3 
Z cos(X) = X^3 sin(Y) 
Z = ?? 

Lorem ipsum dolor sit amet, 
consec te tu r ad ip i sc ing e l i t . 
Pellentesque vel varius dolor. 
Aenean ipsum eros, interdum quis 
blandit at, scelerisque quis nibh. 
Aliquam nibh ligula, elementum 
eget faucibus et, lacinia non nibh. 
Maecenas rutrum libero eu ex 
egestas condimentum. Fusce eget 
nunc sapien. Integer iaculis elit 
ante, in euismod justo sagittis 
faucibus. Nulla vitae interdum 
tellus. In varius quam eget leo 
tempus, nec efficitur est sagittis. 
Duis lobortis finibus libero, id 
feug ia t era t consecte tur id . 
Phasel lus portt i tor, erat non 
venenatis tincidunt, velit libero 
fringilla nunc, eu scelerisque erat 
e n i m s e m p e r l e c t u s . U t 

Lorem ipsum dolor sit amet, 
consec te tu r ad ip i sc ing e l i t . 
Pellentesque vel varius dolor. 
Aenean ipsum eros, interdum quis 
blandit at, scelerisque quis nibh. 
Aliquam nibh ligula, elementum 
eget faucibus et, lacinia non nibh. 
Maecenas rutrum libero eu ex 
egestas condimentum. Fusce eget 
nunc sapien. Integer iaculis elit 
ante, in euismod justo sagittis 
faucibus. Nulla vitae interdum 
tellus. In varius quam eget leo 
tempus, nec efficitur est sagittis. 
Duis lobortis finibus libero, id 
feug ia t era t consecte tur id . 
Phasel lus portt i tor, erat non 
venenatis tincidunt, velit libero 
fringilla nunc, eu scelerisque erat 
e n i m s e m p e r l e c t u s . U t 

Alignment

Lorem ipsum dolor sit amet, 
consec te tu r ad ip i sc ing e l i t . 
Pellentesque vel varius dolor. 
Aenean ipsum eros, interdum quis 
blandit at, scelerisque quis nibh. 
Aliquam nibh ligula, elementum 
eget faucibus et, lacinia non nibh. 
Maecenas rutrum libero eu ex 
egestas condimentum. Fusce eget 
nunc sapien. Integer iaculis elit 
ante, in euismod justo sagittis 
faucibus. Nulla vitae interdum 
tellus. In varius quam eget leo 
tempus, nec efficitur est sagittis. 
Duis lobortis finibus libero, id 
feug ia t era t consecte tur id . 
Phasel lus portt i tor, erat non 
venenatis tincidunt, velit libero 
fringilla nunc, eu scelerisque erat 
e n i m s e m p e r l e c t u s . U t 

Large text corpus Preference Data

Lorem ipsum dolor sit amet, 
consec te tu r ad ip i sc ing e l i t . 
Pellentesque vel varius dolor. 
Aenean ipsum eros, interdum quis 
blandit at, scelerisque quis nibh. 
Aliquam nibh ligula, elementum 
eget faucibus et, lacinia non nibh. 
Maecenas rutrum libero eu ex 
egestas condimentum. Fusce eget 
nunc sapien. Integer iaculis elit 
ante, in euismod justo sagittis 
faucibus. Nulla vitae interdum 
tellus. In varius quam eget leo 
tempus, nec efficitur est sagittis. 
Duis lobortis finibus libero, id 
feug ia t era t consecte tur id . 
Phasel lus portt i tor, erat non 
venenatis tincidunt, velit libero 
fringilla nunc, eu scelerisque erat 
e n i m s e m p e r l e c t u s . U t 

Reasoning

Score: 8/10 Score: 5/10

Code and Math problems 

Production model

◦ This lecture
1. Basics of language models
2. Fundamentals of pre-training
3. Reinforcement learning with human feedback (RLHF)
4. Reasoning with reinforcement learning
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A motivation for language models (LMs)

Example
Predict the next word w given the following source sentence Ssource?
Ssource : “On January 1 people usually say happy new [w].”

Question: ◦ Why is this important?
▶ spelling & grammar correction p(year|Ssource) > p(years|Ssource)
▶ machine translation p(Stranslation 1|Ssource) > p(Stranslation 2|Ssource)
▶ sentence classification p(Sclass 1|Ssource) > p(Sclass 2|Ssource)
▶ speech recognition p(w|Ssource)
▶ chatbot p(w|Ssource)
▶ (more generally) labeling, automated decisions,...
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Basics for language models (LMs) – I

Definition (Language model [7])
Models that assign probabilities to sequences of words are called language models.

Remarks: ◦ Given a sentence with T words: S = w1:T = (w1, . . . , wT ), by the chain rule of probability:

p(S) = p(w1:T ) = p(w1)p(w2|w1)p(w3|w1:2) · · · p(wT |w1:T −1) =
T∏

t=1

p(wt|w1:t−1)

◦ Implicitly, we are enforcing a graphical model that takes “time” into account.

Example
If S = w1:3 = “happy new year”, then p(S) = p(happy)p(new|happy)p(year|happy new).
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Basics for language models (LMs) – II

Question: ◦ How can we compute p(wt|w1:t−1)?

Remarks: ◦ A trivial solution: Just count the frequency on a large corpus, e.g.,

p(year|Ssource) =
p(Ssource + year)

p(Ssource)
≈

#(On January 1 people usually say happy new year)
#(On January 1 people usually say happy new)

◦ But the language is creative, there are several ways to express the same meaning.

◦ The sentence above might even not appear on the corpus.

◦ We need better ways to estimate such probabilities!
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N-gram LMs

Markov assumption [9]
The probability of a word only depends on the last N − 1 words as

p(wt|w1:t−1) = p(wt|wt−N :t−1) ≈
#(wt−N :t)

#(wt−N :t−1)
.

Figure: Markov in 1913 [9] used
“Markov chains” to predict whether
the upcoming letter would be a vowel
or a consonant.

Example
In the bigram LM (N = 2), we only need to estimate p(wt|wt−1) ≈ #(wt−1:t)

#(wt−1) to generate text.

Figure: Count (Left) and probability p(wt|w1:t−1) (Right) from the Berkeley Restaurant Project corpus of 9332 sentences [7].
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Towards pre-training an N-gram LM

◦ In natural language processing (NLP), we use tokens to represent words coming from a vocabulary V.

Terminologies: ◦ A token is the smallest unit that can be assigned a meaning to be processed.
▶ In English, a token often corresponds to a word.
▶ However, a single token can also encode compound words like New York.
▶ In Chinese or Japanese, there is no space between words.
▶ In these languages, sentence segmentation is required before we tokenize.

◦ We indicate the beginning and the end of sentences with tokens ⟨BOS⟩ and ⟨EOS⟩.
▶ Ssource “⟨BOS⟩ Happy new year ⟨EOS⟩” has T = 5 tokens.

◦ The size of our vocabulary is denoted as |V|.

◦ Pre-training: building a LM based on a large corpus in a (often) self-supervised manner.

◦ Inference: Using a trained LM to do next word prediction.
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N-gram LMs: “Pre-training” & Inference

◦ The following simplified examples show the difficulty of pre-training and inference with 2-gram LMs.

“Pre-training”
1. Count #(wt−1) and #(wt−1:t) over the corpus.
2. Obtain probability p(wt|wt−1) over the corpus.

Inference
1. Set w1 as ⟨BOS⟩, t = 1.
2. While True:
▶ wt+1 = arg maxw∈V p(w|wt)
▶ If wt+1 is ⟨EOS⟩: break
▶ t = t + 1

3. Output: [w1, · · · , wt+1].

Remarks: ◦ Need to store the probability for all N -gram pairs.

◦ Language is creative, some new N -gram pairs might not even appear on the corpus.

◦ Cannot incorporate earlier words than N due to the Markov assumption.

p(two | one plus one equals) = p(two | it is wrong that one plus one equals)?
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The optimization objective

◦ A (vector-output) neural network hθ ∈ ∆|V|−1 can be used to model such probability.

− log pθ(b1:T ) = − log

(
T∏

t=1

pθ(bt|b1:t−1)

)
=

T∑
t=1

− log pθ(bt|b1:t−1)︸               ︷︷               ︸
hθ(b1:t−1)[“bt”]


=

T∑
t=1

(
− log hθ(b1:t−1)[“bt”]

)
=

T∑
t=1

(
−

|V|∑
i=1

û[i]
t log u[i]

t

)
= cross entropy loss

▶ ut := hθ(b1:t−1) ∈ R|V| is the probability distribution of the next word given previous t − 1 words.
▶ ût ∈ R|V| is the correct distribution (one-hot) at t step.

Remarks: ◦ Teacher forcing training: We always give the model the correct history sequence.

◦ Auto-regressive inference: The history sequence comes from its prediction result.

◦ Notation: We will use s for prompts and a for an answer sampled from π := hθ in the sequel.
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Alignment: going beyond next token predictions

◦ After the training, we need methods to enforce certain behaviours of the LLM.

Examples: ◦ Impose that the LLM follows instructions.

◦ Avoid bad words in the LLM responses.

◦ Make it likely that the LLM outputs sentences that match human taste.

◦ Alignment can be performed considering different inputs.
▶ Demonstrations
▶ Demonstrations + online access to the environment
▶ Preferences
▶ Preferences + online access to the environment
▶ Reward function
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Alignment from demonstrations

◦ We are given a dataset Ddemo of prompts {si}N
i=1 and desired answers {ai}N

i=1.

◦ We aim at maximizing the likelihood of the answers in the dataset.

◦ This can be done via imitation learning (see Lecture 7).

Alignment via Behavioral Cloning
1: The learner receives: (i) A dataset Ddemo = {(si, ai)}Ndemo

i=1 , (ii) A policy function parameter θ ∈ Θ.
2: The learner computes the loss: ℓ̂BC(θ) :=

∑Ndemo
i=1 [− log πθ (ai|si)] .

3: The learner outputs πθ⋆ with θ⋆ = arg minθ∈Θ ℓ̂BC(θ).
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Alignment from demonstrations + online access

◦ A common method for this setting is SPIN (Self-Play fIne-tuNing) [3], which considers a two player game:

▶ One player tries to generate answers as similar as possible as the observed ones in Ddemo.

▶ The other player aims at distinguish answers of the first player from the the ones in Ddemo.

◦ At iteration t, both “players” aim at solving the following bilevel formulation:

θt+1 = arg max
θ∈Θ

Es∼ρ,a∼π(·|s;θt)
[
rt+1(s, a) − η−1DKL(π(·|s; θ)||π(·|s; θt))

]
, (1)

s.t. rt+1 = arg min
r∈R

Es,a∼DdemoEa′∼π(·|s;θt)
[
ℓ(r(s, a) − r(s, a′))

]
, (2)

▶ where ℓ(·) is a monotonically decreasing, non negative, smooth and convex function,

▶ ρ is the prompt distribution,

▶ η is the step size.

◦ The choice ℓ(x) = −x corresponding to minimize an integral probability metric.

◦ A common choice in practice is the logistic loss function ℓ(s) = log
(

1 + exp(−s)
)

.
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Alignment from demonstrations + online access (continued)

◦ The upper level has an explicit solution π(a|s; θt+1) ∝ π(a|s; θt) exp (ηrt+1(s, a)).

▶ Question: What if θt+1 < Θ?

◦ Assuming θt+1 ∈ Θ, the both problems reduce to a single optimization problem:

θt+1 = arg max
θ∈Θ

Es,a∼DdemoEa′∼π(·|s;θt)

[
−ℓ

(
η−1 log

(
π(a|s; θ)
π(a|s; θt)

)
− η−1 log

(
π(a′|s; θ)
π(a′|s; θt)

))]
. (3)

◦ Self-study: Compare it with DPO to be introduced in few slides.
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Alignment from preferences: Setup

◦ A preference dataset is formed by
▶ Prompts {si}N

i=1.

▶ Response pairs
{

a+
i , a−

i

}N

i=1
.

◦ a+
i denote the preferred response to the prompt si according to the preference model ppref .

◦ The preference model is a mapping as follows ppref : A × A → [0, 1].

◦ ppref(a, a′|s) is the probability that a is preferred to a′ in response to s.

◦ We start focusing on a specific preference model known as Bradley-Terry model [2].

Bradley-Terry model
For some unknown reward function r, the preferences are generated as follows

ppref(a, a′|s) = σ(r(s, a) − r(s, a′)) =
1

1 + er(s,a′)/r(s,a) ,

where σ is the sigmoid function.
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Alignment from preferences via RLHF

◦ The most popular learning from preferences paradigm is RLHF (RL from Human Feedback).

◦ RLHF follows a two step procedure.

◦ First, we fit a reward model r̂ on the preference dataset.

◦ Second, we learn a policy parameterization θ⋆ that

▶ maximizes r̂;

▶ does not drift excessively from the pretrained model πref as measured by βDKL(π(·|s; θ⋆)||πref(·|s))

◦ All in all, we aim at solving the following bilevel problem

θ⋆ = arg max
θ∈Θ

Es∼ρ,a∼π(·|s)
[
r̂(s, a; ϕ)

]
− βEs∼ρ[DKL(π (·|s; θ) ∥πref (·|s))]. (4)

s.t. r̂ = arg max
r∈R

N∑
i=1

log σ(r(si, a+
i ) − r(si, a−

i )). (5)

◦ β is called the “alignment parameter.”

◦ For larger β, the solution will be more aligned to the reference model πref .
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The RLHF algorithm

◦ The two steps in pseudocode look as follows.

RLHF (Reinforcement Learning from Human Feedback)
1: The learner receives: (i) A preference dataset Dpref = {(si, a+

i , a−
i )}Npre

i=1 , (ii) A prompt dataset Dprompts =
{si}

Nprompts
i=1 , (iii) A reward function class R, (iv) A policy function parameter class Θ.

2: The learner estimates the reward as r (·, ·; ϕ⋆) (typically an NN with parameters ϕ) via

r̂ = arg max
r∈R

N∑
i=1

log
(

σ
(

r(si, a+
i ; ϕ) − r(si, a−

i ; ϕ)
))

. (Reward Loss)

3: The learner then approximately solves the following problem:

θ⋆ ∈ arg max
θ∈Θ

Es∼ρ,a∼π(·|s)
[
r̂(s, a; ϕ)

]
− βEs∼ρ[DKL(π (·|s; θ) ∥πref (·|s))], (RLHF)

using PPO or REINFORCE. Note that we do not have all the ingredients to solve the problem.

◦ Thereoretical improvements can be obtained replacing the KL with the sum of KL and χ2 divergences [4].
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Learning from preferences without online access

◦ RLHF requires to generate new responses to the prompt dataset.

◦ It is more computationally efficient to leverage only the preference dataset.

◦ DPO (Direct Preference Optimization) [14] was introduced towards this goal.

Direct Preference Optimization
1: The learner receives as input:

▶ A preference dataset Dpref = {(si, a+
i , a−

i )}N
i=1.

▶ A policy function parameters class Θ.
2: The learner computes the stochastic loss.

ℓ̂DPO(θ) := −
1

|Dpref |

∑
s,a+,a−∈Dpref

[
log
(

σ

(
β log

(
π(a+|s; θ)
πref(a+|s)

)
− β log

(
π⋆(a−|s; θ)
πref(a−|s)

)))]

3: The learner outputs πθ⋆ with θ⋆ = arg minθ∈Θ ℓ̂DPO(θ).
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DPO derivation (Part 1)

◦ For a fixed r(·, ·; ϕ), the solution to (RLHF) (for expressive enough policy classes!) is given by

π⋆
ϕ(a|s) =

πref(a|s) exp(β−1r(s, a; ϕ))
Z(s, ϕ, β)

, (Optimal Policy)

where we defined Z(s, ϕ, β) :=
∑

a′ πref(a′|s) exp(β−1r(s, a′; ϕ)).

◦ By rearranging, it holds that for all s, a that log(π⋆
ϕ(a|s)) = log(πref(a|s)) + β−1r(s, a; ϕ) − log(Z(s, ϕ, β)).

◦ Such a quantity cannot be computed in closed form because computing Z(s, ϕ, β) is intractable.

◦ For two possible answers a, a′ to the same question s, it holds that

log(π⋆
ϕ(a|s)) − log(π⋆

ϕ(a′|s)) = log(πref(a|s)) − log(πref(a′|s)) + β−1r(s, a; ϕ) − β−1r(s, a′; ϕ).
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DPO derivation (Part 2)

◦ Therefore, the reward functions difference can be computed as

r(s, a; ϕ) − r(s, a′; ϕ) = β log
(

π⋆
ϕ(a|s)

πref(a|s)

)
− β log

(
π⋆

ϕ(a′|s)
πref(a′|s)

)
. (6)

◦ The computation is efficient because the normalization constant Z(s, ϕ, β) does not appear.

◦ It follows that we can plug in the above analytical solution into (Reward Loss)

min
ϕ∈Φ

ℓ(ϕ) := −Es∼ρ,(a−≺a+)∼ppref (·|s)

[
log
(

σ
(

β log
(

π⋆
ϕ(a+|s)

πref(a+|s)

)
− β log

(
π⋆

ϕ(a−|s)
πref(a−|s)

)))]
s.t. π⋆

ϕ := arg max
π∈Π

Es∼ρ,a∼π(·|s) [r(s, a; ϕ)] − βEs∼ρ[DKL(π (·|s) ∥πref (·|s))].

◦ The bilevel problem is still too complicated, DPO [14] is derived to ignore the lower level problem.

arg min
θ∈Θ

ℓDPO(θ) := −Es∼ρ,(a−≺a+)∼ppref (·|s)

[
log
(

σ

(
β log

(
π(a+|s; θ)
πref(a+|s)

)
− β log

(
π(a−|s; θ)
πref(a−|s)

)))]
.

(7)
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DPO vs RLHF

◦ DPO is easier computationally. It uses only one neural network.

◦ DPO and RLHF are not equivalent because we dropped the constraint on the policy in the last step.

◦ Therefore, the solution set of the DPO optimization problem includes the RLHF solution set [20].

◦ Some DPO solutions assign high probability to answers unseen in the preference dataset.

◦ To fix the above issue one can constrain the probability mass moved [1].

◦ For the above reason, DPO requires using early stopping in practice.

◦ DPO can be extended in the multi stage setting [13].
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Some limitations of the Bradley-Terry model

◦ The Bradley-Terry model can only capture transitive preferences.

◦ Averaging across humans might not give a dataset where transitivity holds.

◦ As an example, let us consider 3 humans h1, h2, h3 and 3 possible answers y1, y2, y3.

◦ Let us denote ph
pref the preference model of human h defined as follows

ph1
pref(y1, y2) = 1 ph1

pref(y2, y3) = 0 ph1
pref(y3, y1) = 1

ph2
pref(y1, y2) = 0 ph2

pref(y2, y3) = 1 ph2
pref(y3, y1) = 1

ph3
pref(y1, y2) = 1 ph3

pref(y2, y3) = 1 ph3
pref(y3, y1) = 0.

◦ Each of these models is transitive.

◦ However, the average model defined as ppref(y, y′) = 1
3
∑

h∈{h1,h2,h3} ph
pref(y, y′) satisfies

ppref(y1, y2) = ppref(y2, y3) = ppref(y3, y1) = 2/3.

◦ That is, the average model is non transitive and can not be modeled by the BT assumption.
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Nash learning from human feedback (NLHF)

◦ NLHF allows to use general (possibly non transitive) preference models.

Nash Learning from Human Feedback [11]
1: The learner estimates the preference model as ppref (·, ·|·; ϕ⋆) with

ϕ⋆ = arg min
ϕ∈Φ

ℓ̂PM(ϕ) := −
N∑

i=1

log
(

ppref(a
+
i , a−

i |si; ϕ)
)

.

2: Sample ai ∼ π(·|si; θ) and a′,i ∼ π(·|si; θ′) for all i ∈ [N ].
3: The learner computes the stochastic objective

ℓ̂NLHF(θ, θ′) := −
1

|Dprompts|

N∑
i=1

ppref(ai, a′,i|si; ϕ⋆)

+ βDKL(π
(

·|si; θ
)

∥πref
(

·|si
)

) − βDKL(π
(

·|si; θ′
)

∥πref
(

·|si
)

),

4: The learner outputs πθ⋆ with θ⋆ = arg minθ∈Θ maxθ′∈Θ ℓ̂NLHF(θ, θ′).

Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 27/ 40



Finding a saddle point of ℓ̂NLHF(θ, θ′)

◦ From a computational perspective general preferences are harder.

◦ The reason is that we now need to solve a minmax problem.

◦ Notice that under the Bradley-Terry assumption a minimization was enough.

◦ Simple solving with gradient descent ascent has two problem:
▶ No last iterate guarantees.
▶ Slow O(1/

√
T ) rate.

◦ In the next slides we see how to overcome these two challenges.
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Strongly convex, strongly concave case: Nash MD
◦ For β > 0 the problem is strongly convex-strongly concave.

◦ Assuming above and a single state, [11] showed that Nash-MD has O(1/T ) last iterate convergence.

Nash-MD
1: π1 = πref , learning rate η.
2: for t = 1, . . . , T do
3: Compute mixture between initial policy and πt

π̄t(a) =
πt(a)1−βηπref(a)βη∑

b∈A πt(b)1−βηπref(b)βη
.

4: Compute the averaged preference model

pπ̄t
pref(a) =

∑
b∈A

π̄t(b)ppref(a, b).

5: Mirror descent step with gradient evaluated in π̄t: πt+1(a) = arg minπ∈Π
[
⟨π, pπ̄t

pref⟩ + 1
η

DKL(π, π̄t)
]

.

6: end for

◦ Is Nash MD applying gradient descent ascent on ℓ̂NLHF(θ, θ′)?
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Gradient descent ascent
◦ Almost! Find the differences in red.

Gradient Descent Ascent
1: π1 = πref , learning rate η.
2: for t = 1, . . . , T do
3: Compute mixture between initial policy and πt

π̄t(a) =
πt(a)1−βηπref(a)βη∑

b∈A πt(b)1−βηπref(b)βη
.

4: Compute the averaged preference model

pπt
pref(a) =

∑
b∈A

πt(b)ppref(a, b).

5: Mirror descent step with gradient evaluated in πt: πt+1(a) = arg minπ∈Π
[
⟨π, pπt

pref⟩ + 1
η

DKL(π, π̄t)
]

.

6: end for

◦ Since the game is antisymmetric the two players produces exactly the same iterates.

◦ That’s why we talk about gradient descent ascent but it is enough to keep only one sequence of iterates.
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Multi Turn Preference Optimization (MTPO)

◦ [15] uses Gradient Descent Ascent in the multi state setting deriving MTPO.

MTPO
1: π1 = πref , learning rate η.
2: for t = 1, . . . , T do
3: Let Qπ,π′ denote the state action value functions associated to th preference model ppref .
4: Apply the gradient descent ascent at each state s using Qπ,π′ :

▶ π̄t(a|s) = πt(a)1−βηπref (a)βη∑
b∈A

πt(b)1−βηπref (b)βη
.

▶ Qπt,πt (s, a) =
∑

b∈A πt(b)Qπt,πt (s, a, b).

▶ πt+1(·|s) = arg minπ∈Π
[
⟨π(·|s), Qπt,πt (s, ·)⟩ + 1

η
DKL(π(·|s), π̄t(·|s))

]
.

5: end for

◦ MTPO can be seen to converge at a O(1/T ) rate in the strongly convex concave setting.

◦ In the convex concave setting instead gradient descent ascent and therefore MTPO can divergence.
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Optimism to fix it
◦ Let us revisit optimistic gradient descent.

◦ Let ∆ denote the probability simplex.

Optimistic gradient descent ascent (OGDA)
1: Initialize x1 uniformely.
2: for t = 1, . . . , T do
3: Update the decision avariable xt+1 as follows:

xt+1 = arg min
x∈∆

[
⟨x, 2∇f(xt) − ∇f(xt−1)⟩ +

1
η

DKL(x, xt)
]

.
4: end for

◦ The average iterate of ODGA converges at O(1/T ) for convex concave games.

◦ Asymptotically the last iterate converges strictly faster.

◦ The rate becomes o(1/t) for all t large enough.

◦ [19] applies this technique to obtain faster convergence rate in NLHF.
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Learning to reason with RL

User Prompt: si

“A rectangle’s length is three times its width. If the perimeter of the rectangle is 64 units,
what are its dimensions?”

Internal Chain of Though (CoT): bi

<THINK>
Step 1: Let the width be s. Then the length is 3x.
Step 2: The perimeter is given by P = 2(s + 3x) = 8x. So, 8x = 64 and s = 8.
Step 3: Calculate the length: 3x = 3 × 8 = 24.
</THINK>

Final Answer: ai

<ANSWER> The rectangle has a width of 8 units and a length of 24 units. </ANSWER> ri

◦ Question: How can we learn the internal CoT from questions si and rewards ri?
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Group relative policy optimization (GRPO)

◦ Problem: The PPO algorithm requires estimating a value function, which is as big as our LLM.

𝑞𝑞

𝑜𝑜!

𝑜𝑜"

𝑜𝑜#

𝑟𝑟!

𝑟𝑟"

𝑟𝑟#

𝐴𝐴!

𝐴𝐴"

𝐴𝐴#

𝑞𝑞 𝑜𝑜 GAE 𝐴𝐴

𝑟𝑟

𝑣𝑣

Reward 
Model

Policy 
Model

Value 
Model

… … …

Policy 
Model

Reference 
Model

Reward 
Model

PPO

GRPO

Trained
Models

Frozen
ModelsReference 

Model

⊕
𝐾𝐾𝐾𝐾

𝐾𝐾𝐾𝐾

Group 
Computation

Figure: Source: DeepSeekMath https://arxiv.org/abs/2402.03300

◦ Solution: Estimate A by sampling several answers and computing relative rewards within the sample.

◦ Previous work had similar ideas for removing the value model dependency [8].
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Group relative policy optimization (GRPO)

GRPO (optimization formulation) [16]

max
θ

E
s′∼λ

πθt
µ ,{ai}G

i=1∼πθt
(·|s)

1
G

G∑
i=1

min
{

πθ(ai|s)
πθt (ai|s)

A
πθt
i (s, ai), clip

(
πθ(ai|s)
πθt (ai|s)

; 1 − ϵ; 1 + ϵ

)
A

πθt
i (s, a)

}
− βKL(πθ(·|s)||πref(·|s))

Remarks:
◦ The advantages are estimated as A

πθt
i (s, ai) =

r(s,ai)−G−1
∑G

i=1
r(s,ai)√

G−1
∑G

i=1

(
r(s,ai)−G−1

∑G

i=1
r(s,ai)

)2
.

◦ Here G represents the number of actions sampled as a group at each state, i.e., its group size.

◦ GRPO uses the following unbiased estimator [6] to estimate the KL divergence:

KL(πθ(·|s)||πref(·|s)) =
πref(ai|s)
πθ(ai|s)

− log
πref(ai|s)
πθ(ai|s)

− 1

◦ By computing group relative rewards, GRPO reduces update variance and ensures stable learning.
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DeepSeek R1: training on raw rewards

◦ In the DeepSeekMath paper, the rewards still come from a reward model.

◦ Problem: The reward model is not perfect and overoptimizing can lead to reward hacking.

Import os 
Import pandas as pd 
Import numpy as np 

s=0 
for i in range(10): 

s+=l[i]

X=5, Y=3 
Z cos(X) = X^3 sin(Y) 
Z = ?? 

DeepSeek R1

DeepSeekMath

LLMImplement bubble sort.

Compute the acute angle 
of this triangle.

CoT +

LLM CoT +

LLM2 
(Reward model)

LLM2 
(Reward model)

10/10

10/10

Import os 
Import pandas as pd 
Import numpy as np 

s=0 
for i in range(10): 

s+=l[i]

LLMImplement bubble sort.

Compute the acute angle 
of this triangle.

CoT +

LLM CoT +

Compiler/ 
Profiler

Proof Checker

7/10

4/10
X=5, Y=3 
Z cos(X) = X^3 sin(Y) 
Z = ?? 

Reward

◦ Solution: We can query code compiler/interpreters and proof checkers to get high quality rewards.
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Other approaches

◦ OpenAI were the first to use RL for reasoning, with no details disclosed [12].

◦ Kimi 1.5 uses an off-policy ℓ2 regularized policy gradient method with the same baseline as GRPO [17].

◦ Many details about the reward model of DeepSeekR1 remain undisclosed.

◦ HuggingFace is organizing an open source reproduction of DeepSeekR1: OpenR1 [5].

◦ Question: is RL really needed?
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Simple reasoning without RL
◦ Through simple sampling tricks, we can replicate the reasoning behabiour of reasoning LLMs [10]

Figure: Source: https://arxiv.org/pdf/2501.19393

◦ Instead of letting the model answer “2,” we can force the generation for the token “Wait” and continue.

◦ This replicates the reasoning behavior obtained with RL and leads to improve performance without RL.
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Summary of RL for language models

Remarks: ◦ RLHF is needed to align the model with human preferences.

◦ RLHF is a two-step process: reward modeling and policy optimization.

◦ DPO is a more efficient alternative to RLHF.

◦ Reasoning is critical for improving the performance of production models.
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Thank you!

◦ Let’s start with the project!
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OMPO: Using OGDA in Nash learning from Human Feedback
◦ The previous slides highlights results in convex concave setting.

◦ However, in the multi turn setting ℓNLHF is clearly non-convex and non-concave.

◦ [19] bypasses the problem resorting to LP techniques.

◦ Indeed, [19] recast the problem as a bilinear program over the space of occupancy measures.

(d⋆, d⋆) = arg max
d∈F̃

min
d′∈F̃

Es1∼ρ

H∑
h=1

∑
s,a,s′,a′

dh(s, a|s1)r(s, a, s′, a′)d′
h(s′, a′|s1) ,

◦ F̃ is the product set of the Bellman flow constraints for a particular initial state, i.e.

F̃ = ×s1∈supp(ρ)Fs1 .

◦ The Bellman flow constraints for a specific initial state are

Fs1 =
{

d = (d1, . . . , dH) :
∑

a
dh+1(s, a) =

∑
s′,a′ f(s|s′, a′)dh(s′, a′), d1(s) = 1 {s = s1}

}
.

◦ OMPO applies optimistic gradient descent ascent over the occupancy measure space.
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